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Abstract The transferable utility (TU) cooperative games are used as an
effective mathematical representation of cooperation and coalitions forming.
This contribution deals with a modified form of such games in which the
expected pay-offs of coalitions are known only vaguely, where the vagueness
is modelled by means of fuzzy quantities and some other fuzzy set theoretical
concepts. Such games were investigated in [8] and in some other papers. Their
cores and Shapley values were analyzed and some of their basic properties
were shown. This contribution is to extend that analysis, namely from the
point of view of the motivation of players to cooperate in coalitions, as well
as the relation between the willingness to cooperate and the ability to find
the conditions under that the cooperation can be percepted as fair.
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1 Introduction

The concepts of coalition and bargaining, introducing the cooperative behav-
iour of players into games of strategy, appear in the game theory since its very
beginning [14] and they form its significant component in many fundamental
works (see, e. g., [7] or [15]). The coalition forming is, essentially, based on
the expectations of further development of the game. It regards both – the
structure of realized coalitions, as well as their presumed incomes. The expec-
tations are mostly rather vague than stochastic, where the vagueness follows
mostly from the subjectivity existing in the estimations and evaluations of
the acceptability of particular potential results of bargaining. The theory of
fuzzy set (where the seminal work is [17]) offered the game theory effective
tools for mathematical processing of vagueness, mentioned above.

First, the attention was focused on the coalitions forming and its modifi-
cations influenced by the vagueness. Fuzzy coalitions defined as fuzzy subsets
of the all-players set, allow the parallel participation of some player in sev-
eral coalitions (see, e. g. [1, 2, 3]) and this model is investigated till now
(e. g., [5, 11, 12, 13]). Other demonstration of vagueness in the cooperative
games, i. e., the uncertainty regarding the expected incomes of coalitions and
its distribution among their members, was investigated rather later. It was
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briefly mentioned in [8], and more thoroughly analyzed in [9], and recently
this model is developed in several other papers.

The aim of this paper is to contribute to the understanding of methodical
tools used in [9], and to interpret the conclusions derived there. Our main
attention is oriented to the phenomenon of forming cooperation from the
point of view of the players’ motivation under uncertainty on the expected
pay-offs.

The process of negotiation on the eventual cooperation includes two prin-
cipal periods. Each of them is connected with specific level of motivation,
and also its aim reflects different tightness of the accepted agreement.

— The first period covers the stage of a non-cooperative game of strategy,
in which the players recognize the advantages of the cooperative actions
coordinated with other players. The external attribute of this period is
the forming of coalitions based on the knowledge of their expected gains.
The classical deterministic game theory has developed the concept of core
whose non-emptiness indicates the convenience of the universal coalition
of all players.

— The second period includes rather more empathy among all players. The
core, following from (in some sense given) expected incomes of coalitions,
is very rarely a one-element set. If it is not empty then it offers many po-
tential distributions of the total income of coalition among its members.
The choice of the very distribution is the second period of the coopera-
tive negotiations. In distinction from the first period, this choice does not
immediately follow from the formal properties of the coalitional pay-offs.
It is necessary to combine their values with some, more or less subjec-
tive, idea of rightful rates of particular players on the total profit of the
coalition. As every player has, in too many cases, his own idea of such
justice, there has to be an external authority, either some “judge” not be-
longing among the players, or some general, commonly acceptable rule,
re-distributing the profit. The classical theory of cooperative games with
transferable utility offers the Shapley value (see [16, 15, 7]) as such rule
possessing acceptable and rational properties of the individual pay-offs.

The periods of negotiation mentioned above are, in the deterministic game
model, solved for a long time, already. The theory of fuzzy cooperative games
in the form with fuzzy characteristic function analyses these concepts and
methods especially in [9]. Nevertheless, some problems regarding the mutual
relation between fuzzy core and fuzzy Shapley value were passed or, at most,
only registered without more thorough discussion. In this paper, we aim to
contribute to their analysis by methodological comments and several general
results dealing with the two periods of negotiation, mentioned above.

The following sections are organized as follows. The next Section 2 sum-
marizes the basic concepts which are dealt in the rest of this contribution,
and including the notions of fuzzy core and fuzzy Shapley value. The gen-
eral conclusions following from this analysis and regarding the motivation
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of player to the cooperation are presented in Section 3. The last Section 4
includes a conclusive remark.

2 The Models

The basic elements of both models of cooperative game with transferable
utility analyzed in this paper – the deterministic one and its fuzzy exten-
sion – are briefly recollected in this section. The deterministic case is well
known from the classical literature (see, e. g., [7] or [15]), meanwhile its fuzzi-
fication was suggested in [9]. The subsection dealing with the deterministic
model is completed by the concepts of core and Shapley value. Their fuzzified
counterparts are analyzed in the last subsection of this section.

2.1 TU Cooperative Game – Deterministic Case

Let us recollect, first, the fundamental definitions of the model of cooperative
game with transferable utility (TU-game).

In the whole paper, we denote by R the set of all real numbers.
If M is a set, then we denote in the following sections by P(M) the set

of all subsets of M (the potential set of M).
The TU-game is defined as a pair (I, v), where I = {1, 2, . . . , n} is a non-

empty and finite set of players and v : P(I) → R such that v(∅) = 0 is called
characteristic function of the game.

Every real-valued vector (xi)i∈I ∈ Rn such that x1 + x2 + · · ·+ xn ≤ v(I)
is called an imputation in the TU-game (I, v). The basic solution concept in
such game is the set of imputations C ⊂ Rn called the core of the game and
such that

C =

{
x ∈ Rn :

∑

i∈I

xi ≤ v(I) and for all K ∈ P(I),
∑

i∈K

xi ≥ v(K)

}
. (2.1)

It is evident that the coalition I of all players can be effectively formed in
a TU-game, only if its core C is non-empty. Moreover, the non-emptiness of
core is the single information which the players need to recognize that the
coalitional cooperation over complete set I is desirable.

Comment 1. The players need not any exogenous authority to conclude if
the cooperation covering complete set I is possible, i. e., if it can be useful
for all of them. The non-emptiness of the core follows from the definitoric
elements of the game, I and v, and it does demand any other assumption or
rule.
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Anyhow, the construction of the core C itself does not mean that the
negotiations are finished. If C 6= ∅ then it usually contains more than one
imputation and each of the players can have his own idea of the core im-
putations which is the most righteous one. The structure of the given game
itself, i. e., the pair (I, v) and its knowledge, does not guarantee the objective
choice of a distribution of the value v(I) among the players, respected and
accepted by all of them.

Comment 2. The critical moment of the negotiation is the step from the
retrieval of the core and its reduction on one single imputation. In other
words, the players themselves are able to recognize the necessity of coopera-
tion but they are not able to agree spontaneously with one single imputation
distributing the common profit among them.

Hence, it is inevitable to include an additional element of the game, an
arbiter, who decides which distribution of the profit is righteous.

In the practical negotiation, the arbiter can be a person whose authority
is confirmed by all agents (players). But it can be an abstract scheme, too,
accepted by all players even before the negotiations process. The game theo-
retical models usually do with a set of principles respected and accepted by
the players. These principles were formulated in [16] and the distribution of
profits forms a real-valued vector t = (ti)i∈I called a vector of Shapley values
(see, e. g., [15, 7, 9]). The principles mentioned above are as follows.

– The values ti, i ∈ I, do not depend on the ordering of players.
– Vector of Shapley values (ti)i∈I is to be an imputation, such that

n∑

i=1

ti = v(I).

– If (I, v1), (I, v2) are two TU-games over the set of players I and (ti(v1))i∈I ,
(ti(v2))i∈I are vector of Shapley values, respectively, if (I, v1 + v2) is a
TU -game such that for each K ∈ P(I),

(v1 + v2) (K) = v1(K) + v2(K),

and if (ti(v1 + v2))i∈I is the vector of Shapley values for (I, v1 + v2) then

ti(v1 + v2) = ti(v1) + ti(v2) for all i ∈ I.

Note that the non-emptiness of Core is not demanded. Shapley (see, [16])
has constructed an effective formula for the evaluation of ti, i = 1, . . . , n,
namely, if for every K ∈ P(I), k is the number of players in K, then

ti =
∑

K∈P(I)

(n− k)!(k − 1)!
n!

(v(K)− v(K − {i})), i ∈ I. (2.2)
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Let us note that formula (2.2) defines a vector of Shapley values (ti)i∈I fulfill-
ing the above conditions even if the core C of the game (I, v) is empty, under
the assumption that for any K, L ⊂ I such that K ∩ L = ∅, the inequality

v(K ∪ L) ≥ v(K) + v(L) (2.3)

holds. Of course, in such case (ti)i∈I /∈ C. If C 6= ∅ then (ti)i∈I ∈ C,

2.2 Fuzzy Quantities

The above deterministic TU-game model is well know, relatively simple, but
its correspondence with real cooperative behaviour is rather limited by the la-
tent assumption that the values v(K), K ⊂ I, are deterministic real numbers.
Such precise knowledge preceding the proper realization of the game appears
too optimistic. This discrepancy can be avoided by using the concepts of
fuzzy quantities theory.

In the rest of this paper, if M is a set then we denote by F (M) the class
of all fuzzy subsets of M (cf. [17]).

If A ∈ F (M) then µA : M → [0, 1] is the membership function of A. Any
a ∈ F (R) with µaR → [0, 1] such that

µa(xa) = 1 for at least one xa ∈ R, (2.4)
there exist x1, x2 ∈ R such that x1 ≤ xa ≤ x2 (2.5)

and µa(x) = 0 for all x /∈ [x1, x2],

is called a fuzzy quantity. Each real number xa fulfilling (2.4) is called a
modal value of a. The set of all fuzzy quantities will be denoted by F ∗. As
shown, e. g., in [4, 8] and many other works, it is possible to define algebraic
operations over F ∗, using so called extension principle. In this paper, we use
two of algebraic operations over fuzzy quantities. Let us consider a, b ∈ F ∗

and r ∈ R, then the sum a ⊕ b and crisp product r · a are fuzzy quantities,
too. Their membership functions are

µa⊕b(x) = sup
y∈R

[min (µa(y), µb(x− y))] , for x ∈ R, (2.6)

µr·a(x) = µa(x/r) if r 6= 0, and (2.7)
µ0·a(0) = 1, µ0·a(x) = 0 for x 6= 0.

There exist numerous approaches to the ordering relation between fuzzy
quantities (see, e. g., [6]). Here we use the one of them which is defined as a
fuzzy relation ≥ with membership function ν≥ : F ∗×F ∗ → [0, 1], where for
a, b ∈ F ∗

ν≥(a, b) = sup [min (µa(x), µb(y)) : x, y ∈ R, x ≥ y] (2.8)
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is the possibility that a ≥ b.

2.3 Fuzzy Extension of a TU-game

As we have mentioned above, we consider here the fuzzification of the char-
acteristic function v. If for every coalition K ∈ P(I) there exists a fuzzy
quantity w(K) ∈ F ∗ such that v(K) is a modal value of w(K), then we say
that the pair (I, w) is a fuzzy extension of the TU-game (I, v), and we call w
the fuzzy characteristic function of (I, w).

It is not difficult to define the set of fuzzy imputations in (I, w) as a fuzzy
subset V of Rn with membership function µV : Rn → [0, 1], where

µV ((x1, . . . , xn)) = ν≥

(
w(I),

n∑

i=1

xi

)
, (x1, . . . , xn) ∈ Rn, (2.9)

where (2.8) was used.
Similarly, the fuzzy core of (I, w) is a fuzzy subset of Rn (see [9]) denoted

by Cw and with membership function µC : Rm → [0, 1], where for any x =
(x1, . . . , xn) ∈ Rn

µC(x) = min

[
µV (x), min

(
µ≥

(∑

i∈K

xi, w(K)

)
: K ∈ P(I)

)
.

]
(2.10)

Remark 1. Previous definition, together with (2.8) immediately mean that
if V is a fuzzy imputation and Cw is a core of a fuzzy extension (I, w) of
some TU -game (I, v), and if α ≥ β, α, β ∈ [0, 1] then

{x ∈ Rn : µV (x) = α} ⊂ {x ∈ Rn : µV (x) = β} ,

and
{x ∈ Rn : µC(x) = α} ⊂ {x ∈ Rn : µC(x) = β} .

Comment 3. Analogously to the deterministic concept of imputation as
an accessible distribution of profit among all players, the fuzzy imputation
represents the accessibility of profit distribution structured by uncertainty
connected with particular incomes expected by the coalition of all players I.

Comment 4. Similarly, the fuzzy core represents the distributions of global
profit among all players, which cannot be effectively protested by any coali-
tion, and which is structured by uncertainty connected with particular in-
comes expected by the coalition of all players.
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There exists one concept, more, whose deterministic form we know and
which turns into its fuzzy counterpart if a fuzzy extension of a TU-game
is considered. Namely, the Shapley value (2.2). Its fuzzification can be con-
structed in two ways.

The first way consists in the passive application of formula (2.2) where
fuzzy quantities w(K), K ∈ P(I) are used instead of the crisp values v(K).
This method was analyzed in [9] and it is evident that it results into fuzzy
quantities for every Shapley value. More precisely, let i ∈ I and let us nu-
merate the coalitions from P(I) as

{K0, K1,K2, . . . , KN} , where K0 = ∅ and N = 2n − 1. (2.11)

Then the fuzzy quantity si ∈ F ∗ with µs(i), defined by

si =
(n− k1)!(k1 − 1)!

n!
(w(K1)⊕ (−1 · w(K1 − {i})))⊕ · · · (2.12)

· · · ⊕ (n− kN )!(kN − 1)!
n!

(w(KN ) + (−1 · w(KN − {i})))

can be considered for the i-th component of the vector of fuzzy Shapley
values. Here, kj is the number of members of the coalition Kj and all kj ,
j = 1, . . . , N , are crisp numbers. It means that operations used in (2.12) are
fully characterized by (2.6) and (2.7) and their properties are analyzed, e. g.,
in [8] and [4] and recollected also in [9]. This method, however lucid it is,
displays one significant discrepancy. Namely, if i /∈ K for some K ∈ P(I)
then in the deterministic case v(K) − v(K − {i}) = 0, and formula (2.2)
deals with coalitions including i, only. As shown in [8], this conclusion is
not correct in the case of fuzzy extension (I, w) of (I, v). If i /∈ K then
w(K)⊕ (−1 ·w(K − {i})) = w(K)⊕ (−1 ·w(K)) = a(i,K), where a(i,K) is
a fuzzy quantity from F ∗ with at least one modal value equal to 0,

µa(i,K)(0) = 1,

and with symmetric membership function where

µa(i,K)(x) = µa(i,K)(−x) for all x ∈ R.

Usually, except very special cases with degenerated fuzziness, a(i,K) used in
(2.12) extends the uncertainty of the resulting fuzzy value si ∈ F ∗ and in
this sense it influences the stability of eventually achieved results of negotia-
tion. Namely, it symmetrically increases the extent of uncertainty connected
with si.

This, in certain sense formal, discrepancy can be avoided if we limit the
summation in (2.12) on the coalitions from P(I) for which i ∈ K. More
formally, we may define a fuzzy quantity qi ∈ F ∗ with membership function
µq(i) : R → [0, 1] by means of modified (2.12)
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qi =
(n− k1)!(k1 − 1)!

n!
· σ(i, k1) · (w(K1)⊕ (−1 · w(K1 − {i})))⊕ · · · (2.13)

· · · ⊕ (n− k1N)!(kN − 1)!
n!

· σ(i, kN ) · (w(KN )⊕ (−1 · w(KN − {i}))) ,

where

σ(i,Kj) = 1 iff i ∈ Kj , σ(i, Kj) = 0 iff i /∈ Kj , j = 1, . . . , N

and where the notations used in (2.12) are preserved.

The second way of constructing fuzzy Shapley value is based on the general
extension principle, as well. For every i ∈ I and for every Kj , j = 0, 1, . . . , N ,
we denote µj : R → [0, 1] the membership function of fuzzy quantity w(Kj).
Then we define fuzzy quantity ui ∈ F ∗ with membership function µu(i) :
R → [0, 1] by means of

µu(i)(x) = sup
[
min (µ1(y1), µ2(y2), . . . , µn(yN )) : (2.14)

y1, . . . , yN ∈ R, x =
∑

j=1,...,N

(n− kj)!(kj − 1)!
n!

(
yj − y`j

) ]
,

where n and kj are interpreted in agreement with (2.12) and for every j =
1, . . . , N , K`j − {i}.

The fuzzy number ui is the i-th component of fuzzy Shapley value of (I, w).

Remark 2. It is easy to see that for Kj ∈ P(I) and i ∈ I such that i /∈ K
then yj − y`j and, consequently, the relevant element of the sum in (2.13)
vanishes.

Lemma 1. Let (I, w) be fuzzy extension of a TU-game (I, v), let for any
i ∈ I, si ∈ F ∗ be defined by (2.12), qi ∈ F ∗ be defined by (2.13), and let
ui ∈ F ∗ be defined by (2.14). Then

µu(i)(x) = µq(i)(x) for all i ∈ I, x ∈ R

and there exist b, d ∈ F ∗, such that

µb(0) = µd(0) = 1, µb(x) = µb(−x), µd(x) = µd(−x), x ∈ R,

and
ui ⊕ b = si ⊕ d.

Proof. The first statement,

µu(i)(x) = µq(i)(x)
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for all i ∈ I and x ∈ R follows from (2.13) and (2.14), immediately, as for
any Kj ∈ P(I) such that i /∈ Kj , σ(Kj , i) = 0 and µj(0) = 1. In this sense,
the values of µj do not influence the value of µui(x).

The second statement, namely the additive equivalence of ui and si in the
sense of [8], follows from (2.13) and (2.12). Namely, si = qi⊕b, where b ∈ F ∗,
and b is the sum of fuzzy quantities

(n− kj)!(kj − 1)!
n!

(w(Kj)⊕ (−1 · w(Kj)))

for those Kj for which i /∈ Kj . Then each of such fuzzy quantities is sym-
metric, i. e., they fulfil the properties formulated in the proved statement.
It means that their sum b is symmetric, as well (see [8]), and the second
statement is proven. ¤

If (I, v) is a TU-game and (I, w) its fuzzy extension, then the fundamental
fuzzy solution concepts of (I, w) are fuzzy extensions of their crisp counter-
parts in (I, v). It is not difficult to formulate this conclusion by means of the
following statements.

Theorem 1. Let (I, v) be a TU-game and (I, w) its fuzzy extension. If C
and Cw are the core of (I, v) and fuzzy core of (I, w), respectively, then Cw

is fuzzy extension of C. It means that for any x ∈ Rn

µC(x) = 1 iff x ∈ C.

Proof. Let x = (x1, x2, . . . , xn) ∈ C. Then

ν≥

(∑

i∈K

xi, w(K)

)
= 1 for all K ∈ P(I),

and ν≥

(
w(I),

n∑

i=1

xi

)
= 1

(2.15)

as follows from (2.8) and from the fact that each fuzzy imputation is a fuzzy
extension from some crisp imputation. Consequently, µC(x) = 1.

Let, on the other hand, µC(x) = 1. Then, due to (2.10), all membership
values in (2.15) are necessarily equal to 1, which immediately implies that
x ∈ C. ¤

Theorem 2. Let (I, v) be a TU-game and (I, w) its fuzzy extension. Let t =
(t1, t2, . . . , tn) ∈ Rn be (crisp) Shapley value of (I, v) defined by (2.2). Then
the vector of fuzzy quantities s = (si)i∈I defined by (2.12), vector of fuzzy
numbers u = (ui)i∈I defined by (2.14), and vector of fuzzy quantities q =
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(qi)i∈I defined by (2.15) are vectors of fuzzy extensions of ti, i = 1, 2, . . . , n,
respectively.

Proof. Formulas (2.2) and (2.14) immediately imply that ui(ti) = 1 for all
i ∈ I and, consequently, fuzzy quantity ui is a fuzzy extension of ti for all
i = 1, 2, . . . , n. The first statements of Lemma 1 means that the above result
is true for fuzzy quantities qi and crisp Shapley values ti, i ∈ I, as well.
Moreover, formula

ui ⊕ b = si ⊕ d

where µb(0) = µd(0) = 1, used in the second statement of Lemma 1, implies
that if some x ∈ R is a modal value of ui then it is a modal value of si, as well
(see (2.6)). Hence, ti is a modal value of si for all i ∈ I, and the statement
of the theorem is true. ¤

Remark 3. The relevant definitions immediately imply that if for all j =
0, 1, . . . , N

µj(v(kj)) = 1, µj(x) = 0 for all x 6= v(Kj),

then Cw is identical with the crisp core C of (I, v), and all fuzzy Shapley
values (ui)i∈I , (qj)i∈I and (si)i∈I are equal and identical with crisp Shapley
values (ti)i∈I of (I, v).

3 Vague Willingness to Cooperation

After introducing or remembering the main concepts of interest, i. e., the
fuzzy extensions of cooperative game with transferable utility, its core and
Shapley value, we aim to transfer the ideas of crisp cooperation model
into their fuzzy counterparts. Let us summarize the fundamental knowledge
achieved in the deterministic theory:

– The non-emptiness of the core suffices to the recognition that rational
cooperation is the optimal behaviour of players.

– But it does not suffice to identify which cooperation (partition of the
common profit of I) is the rational one. Identification of this rationality
demands the acceptance of an additional rule, the value (Shapley value)
of the game.

The general properties of the value are summarized in subsection 2.1.
The main purpose of this section is to discuss the validity of the previous,

rather methodological, consequences for the case of the fuzzy extension of a
TU-game.

The vagueness of the expected pay-offs, i. e., the substitution of the crisp
numbers v(K) by fuzzy quantities w(K) for all K ∈ P(I), may appear like
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a degradation of the conditions under which the players form the coalitions –
our traditional thinking percepts the uncertainty as a discrepancy, in general.
In fact, the existence of vagueness in the expectation of coalitional profits,
enriches the analysis of the game and its structure. The fuzzy extension (I, w)
of (I, v), with many levels of possibilities regarding the players’ expectations,
is not only much more realistic but also much more effective in the process
of forming the most rational cooperative behaviour.

The fuzzy core is a lucid demonstration of the above rule. If (I, v) and
(I, w) are a deterministic TU-game and its fuzzy extension, respectively, then
the core C and fuzzy core Cw respect analogous relation. The fuzzy core Cw

does not grind the crisp willingness for cooperation based on the deterministic
expectations of profit but, on the contrary, it enlarges the potential possibil-
ities of agreement by the (usually quite wide) class of not completely sure
but possible variants. If we consider the fact that the “fully deterministic”
expectations of profit made before the realization of the game cannot be as
doubtless as they appear to be the fuzzy extension of the cooperation model
is more realistic (and more precise) than the crisp one.

More formally, let us consider the fuzzy core Cw of a fuzzy extension (I, w)
of TU-game (I, v). Then we may define the number

mC = sup (µC(x) : x ∈ Rn) , (3.1)

which we call the cooperative potential of (I, w).

Remark 4. Evidently, 0 ≤ mC ≤ 1, and if (I, w), (I, w′) are two fuzzy
extensions of (I, v) such that µw(x) ≥ µw′(x) for all x ∈ Rn and if mC , m′

C

are their cooperative potentials, respectively, then mC ≥ m′
C .

The cooperative potential can be accepted for the measure of ability of the
players in I to accept the global all-players’ coalition. The previous remark
stresses the obvious fact that the more the fuzzy extension of (I, w) differs
from its crisp base, the higher is the possibility that the players find a common
agreement.

The question to be answered about the fuzzy Shapley value is rather differ-
ent. Namely, it is important to know if, and in which way, the fuzzy Shapley
value respects the general demands on values, formulated in subsection 2.1.

Here, we focus our attention on the fuzzy Shapley values defined by (2.14)
and denoted by ui ∈ F ∗. Due to Lemma 1, we know that its properties are
identical with the properties of qi ∈ F ∗ (defined by (2.13)) and in some sense
equivalent with the properties of si ∈ F ∗. This is valid for all i ∈ I.

Remark 5. As follows from (2.14), immediately, the membership functions
µu(i) for i = 1, 2, . . . , n, are independent on the ordering of their computation.

Lemma 2. The modal values t1, t2, . . . , tn, v(I) of the fuzzy quantities
u1, u2, . . . , un, w(I) fulfil the equality
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∑

i∈I

ti = v(I).

Proof. The statement follows from (2.14) and (2.2), immediately. ¤

Lemma 3. Let (I, v1) and (I, v2) be TU-games and (I, w1), (I, w2) be their
fuzzy extensions, respectively. Let (I, w1 ⊕ w2) be a fuzzy cooperative game
such that for every K ∈ P(I)

(w1 ⊕ w2) (K) = w1(K)⊕ w2(K),

and, finally, let (I, v1 + v2) be a TU-game such that for every K ∈ P(K)

(v1 + v2) (K) = v1(K) + v2(K).

Then (I, w1 + w2) is a fuzzy extension of (I, w1 ⊕ w2), modal values
(v1 + v2) (K) of (w1 ⊕ w2) (K), K ∈ P(I).

Proof. The statement follows from the definition of fuzzy extension of TU-
game, and from the assumptions of this lemma. ¤

Lemma 4. Under the assumptions of Lemma 3 let us denote by ti, i =
1, 2, . . . , n, the Shapley values of (I, v). Then for every i ∈ I, ti is a modal
value of ui ∈ F ∗.

Proof. The statement follows from (2.13) and (2.2), immediately. For every
K ∈ P(I), µw(v(K)) = 1 and, consequently, µu(i)(ti) = 1, i = 1, 2, . . . , n. ¤

Note that the validity of the general properties of fuzzy Shapley values is
in more detailed way investigated in [9], Chapter 9.

Comment 5. The vagueness included in the concept of fuzzy extension of a
TU-game influences also the validity of the general principles connected with
the concept of the value, especially of the Shapley value. Relative generality
of the fuzzy characteristic function implies also rather free formal structure
of fuzzy Shapley value, and the guaranteed fulfillment of the basic properties
of value for the modal values of its fuzzified form, only.

4 Conclusive Remark

The previous brief analysis of the fuzzified TU -games where the fuzzification
regards the characteristic function and concepts derived from it, allows to
formulate the following heuristic conclusion.
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The vagueness of expected pay-offs, which is natural, rather influences the
formal properties of the core and Shapley value, but it does not violate their
very important functions – namely, to indicate the motivation of player for
cooperation, and to show an acceptable distribution of the common profit
among cooperating players. Or course, the vagueness of expectations causes
certain vagueness of the concepts of core and Shapley value, but this vague-
ness does not limit the information hidden in the core, and it rather modifies
than limits similar information in the Shapley value.

In other words the fuzzification of pay-offs, in principle, does not signifi-
cantly influence the ability and willingness of the players to cooperate.
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